Click Below to Get the Code

Browse, clone, and build from real-world templates powered by Harper.
Tutorial
GitHub Logo

From Local to Distributed Multi-Node Cluster in Minutes

See how to take a local Harper app to a distributed, multi-node cloud cluster with simple deployment steps, built-in scaling, and an MQTT real-world demo.
Harper Learn
Tutorial
Harper Learn

From Local to Distributed Multi-Node Cluster in Minutes

By
Ivan R. Judson, Ph.D.
November 14, 2025
By
Ivan R. Judson, Ph.D.
November 14, 2025
By
Ivan R. Judson, Ph.D.
November 14, 2025
November 14, 2025
See how to take a local Harper app to a distributed, multi-node cloud cluster with simple deployment steps, built-in scaling, and an MQTT real-world demo.
Ivan R. Judson, Ph.D.
Distinguished Solution Architect

‍

In this week’s Harper Learn session, Solutions Architect Ivan Judson walks through how to take a simple local setup and deploy it to a fully managed, multi-node Harper cluster in just a few steps. You’ll see how a project that starts on your laptop—configured with static files, users, and basic access rules—can be pushed to the cloud and immediately scaled across nodes with Harper’s streamlined deployment workflow. Ivan demonstrates how configuration, access groups, and app logic seamlessly transfer from local to distributed environments, highlighting the power and simplicity of Harper’s fused platform.To wrap up, Ivan gives a sneak peek of next week’s session by sending an MQTT message that triggers a real-world action—offering a glimpse into how Harper enables fast, event-driven applications. Whether you're building locally or deploying globally, this episode shows how quickly you can go from development to distributed production with Harper.

Resources
Follow Along with Harper Learn: https://github.com/HarperFast/harper-learn
Get Help on Discord: https://www.harper.fast/discord
CLI Remote Operations: https://docs.harperdb.io/docs/deployments/harper-cli#remote-operations

‍

‍

In this week’s Harper Learn session, Solutions Architect Ivan Judson walks through how to take a simple local setup and deploy it to a fully managed, multi-node Harper cluster in just a few steps. You’ll see how a project that starts on your laptop—configured with static files, users, and basic access rules—can be pushed to the cloud and immediately scaled across nodes with Harper’s streamlined deployment workflow. Ivan demonstrates how configuration, access groups, and app logic seamlessly transfer from local to distributed environments, highlighting the power and simplicity of Harper’s fused platform.To wrap up, Ivan gives a sneak peek of next week’s session by sending an MQTT message that triggers a real-world action—offering a glimpse into how Harper enables fast, event-driven applications. Whether you're building locally or deploying globally, this episode shows how quickly you can go from development to distributed production with Harper.

Resources
Follow Along with Harper Learn: https://github.com/HarperFast/harper-learn
Get Help on Discord: https://www.harper.fast/discord
CLI Remote Operations: https://docs.harperdb.io/docs/deployments/harper-cli#remote-operations

‍

See how to take a local Harper app to a distributed, multi-node cloud cluster with simple deployment steps, built-in scaling, and an MQTT real-world demo.

Download

White arrow pointing right
See how to take a local Harper app to a distributed, multi-node cloud cluster with simple deployment steps, built-in scaling, and an MQTT real-world demo.

Download

White arrow pointing right
See how to take a local Harper app to a distributed, multi-node cloud cluster with simple deployment steps, built-in scaling, and an MQTT real-world demo.

Download

White arrow pointing right

Explore Recent Resources

Comparison
GitHub Logo

Harper vs. Standard Microservices: Performance Comparison Benchmark

A detailed performance benchmark comparing a traditional microservices architecture with Harper’s unified runtime. Using a real, fully functional e-commerce application, this report examines latency, scalability, and architectural overhead across homepage, category, and product pages, highlighting the real-world performance implications between two different styles of distributed systems.
Comparison
A detailed performance benchmark comparing a traditional microservices architecture with Harper’s unified runtime. Using a real, fully functional e-commerce application, this report examines latency, scalability, and architectural overhead across homepage, category, and product pages, highlighting the real-world performance implications between two different styles of distributed systems.
Person with short dark hair and moustache, wearing a colorful plaid shirt, smiling outdoors in a forested mountain landscape.
Aleks Haugom
Senior Manager of GTM & Marketing
Comparison

Harper vs. Standard Microservices: Performance Comparison Benchmark

A detailed performance benchmark comparing a traditional microservices architecture with Harper’s unified runtime. Using a real, fully functional e-commerce application, this report examines latency, scalability, and architectural overhead across homepage, category, and product pages, highlighting the real-world performance implications between two different styles of distributed systems.
Aleks Haugom
Dec 2025
Comparison

Harper vs. Standard Microservices: Performance Comparison Benchmark

A detailed performance benchmark comparing a traditional microservices architecture with Harper’s unified runtime. Using a real, fully functional e-commerce application, this report examines latency, scalability, and architectural overhead across homepage, category, and product pages, highlighting the real-world performance implications between two different styles of distributed systems.
Aleks Haugom
Comparison

Harper vs. Standard Microservices: Performance Comparison Benchmark

A detailed performance benchmark comparing a traditional microservices architecture with Harper’s unified runtime. Using a real, fully functional e-commerce application, this report examines latency, scalability, and architectural overhead across homepage, category, and product pages, highlighting the real-world performance implications between two different styles of distributed systems.
Aleks Haugom
Tutorial
GitHub Logo

A Simpler Real-Time Messaging Architecture with MQTT, WebSockets, and SSE

Learn how to build a unified real-time backbone using Harper with MQTT, WebSockets, and Server-Sent Events. This guide shows how to broker messages, fan out real-time data, and persist events in one runtime—simplifying real-time system architecture for IoT, dashboards, and event-driven applications.
Harper Learn
Tutorial
Learn how to build a unified real-time backbone using Harper with MQTT, WebSockets, and Server-Sent Events. This guide shows how to broker messages, fan out real-time data, and persist events in one runtime—simplifying real-time system architecture for IoT, dashboards, and event-driven applications.
A man with short dark hair, glasses, and a goatee smiles slightly, wearing a black shirt in front of a nature background.
Ivan R. Judson, Ph.D.
Distinguished Solution Architect
Tutorial

A Simpler Real-Time Messaging Architecture with MQTT, WebSockets, and SSE

Learn how to build a unified real-time backbone using Harper with MQTT, WebSockets, and Server-Sent Events. This guide shows how to broker messages, fan out real-time data, and persist events in one runtime—simplifying real-time system architecture for IoT, dashboards, and event-driven applications.
Ivan R. Judson, Ph.D.
Dec 2025
Tutorial

A Simpler Real-Time Messaging Architecture with MQTT, WebSockets, and SSE

Learn how to build a unified real-time backbone using Harper with MQTT, WebSockets, and Server-Sent Events. This guide shows how to broker messages, fan out real-time data, and persist events in one runtime—simplifying real-time system architecture for IoT, dashboards, and event-driven applications.
Ivan R. Judson, Ph.D.
Tutorial

A Simpler Real-Time Messaging Architecture with MQTT, WebSockets, and SSE

Learn how to build a unified real-time backbone using Harper with MQTT, WebSockets, and Server-Sent Events. This guide shows how to broker messages, fan out real-time data, and persist events in one runtime—simplifying real-time system architecture for IoT, dashboards, and event-driven applications.
Ivan R. Judson, Ph.D.
Podcast
GitHub Logo

Turn Browsing into Buying with Edge AI

Discover how Harper’s latest features streamline development, boost performance, and simplify integration. This technical showcase breaks down real-world workflows, powerful updates, and practical tips for building faster, smarter applications.
Select*
Podcast
Discover how Harper’s latest features streamline development, boost performance, and simplify integration. This technical showcase breaks down real-world workflows, powerful updates, and practical tips for building faster, smarter applications.
Person with short hair wearing a light blue patterned shirt, smiling widely outdoors with blurred greenery and trees in the background.
Austin Akers
Head of Developer Relations
Podcast

Turn Browsing into Buying with Edge AI

Discover how Harper’s latest features streamline development, boost performance, and simplify integration. This technical showcase breaks down real-world workflows, powerful updates, and practical tips for building faster, smarter applications.
Austin Akers
Dec 2025
Podcast

Turn Browsing into Buying with Edge AI

Discover how Harper’s latest features streamline development, boost performance, and simplify integration. This technical showcase breaks down real-world workflows, powerful updates, and practical tips for building faster, smarter applications.
Austin Akers
Podcast

Turn Browsing into Buying with Edge AI

Discover how Harper’s latest features streamline development, boost performance, and simplify integration. This technical showcase breaks down real-world workflows, powerful updates, and practical tips for building faster, smarter applications.
Austin Akers
Tutorial
GitHub Logo

The Easiest Way to Use MQTT: A Hands-On Demo with Harper’s Built-In Broker

Learn how MQTT works and see a real-time demo using Harper’s built-in MQTT broker. Discover topics, Pub/Sub, QoS, retained messages, and how Harper simplifies IoT and edge data workflows. Watch how to publish, subscribe, and store sensor data instantly with an easy, developer-friendly setup.
Harper Learn
Tutorial
Learn how MQTT works and see a real-time demo using Harper’s built-in MQTT broker. Discover topics, Pub/Sub, QoS, retained messages, and how Harper simplifies IoT and edge data workflows. Watch how to publish, subscribe, and store sensor data instantly with an easy, developer-friendly setup.
A man with short dark hair, glasses, and a goatee smiles slightly, wearing a black shirt in front of a nature background.
Ivan R. Judson, Ph.D.
Distinguished Solution Architect
Tutorial

The Easiest Way to Use MQTT: A Hands-On Demo with Harper’s Built-In Broker

Learn how MQTT works and see a real-time demo using Harper’s built-in MQTT broker. Discover topics, Pub/Sub, QoS, retained messages, and how Harper simplifies IoT and edge data workflows. Watch how to publish, subscribe, and store sensor data instantly with an easy, developer-friendly setup.
Ivan R. Judson, Ph.D.
Dec 2025
Tutorial

The Easiest Way to Use MQTT: A Hands-On Demo with Harper’s Built-In Broker

Learn how MQTT works and see a real-time demo using Harper’s built-in MQTT broker. Discover topics, Pub/Sub, QoS, retained messages, and how Harper simplifies IoT and edge data workflows. Watch how to publish, subscribe, and store sensor data instantly with an easy, developer-friendly setup.
Ivan R. Judson, Ph.D.
Tutorial

The Easiest Way to Use MQTT: A Hands-On Demo with Harper’s Built-In Broker

Learn how MQTT works and see a real-time demo using Harper’s built-in MQTT broker. Discover topics, Pub/Sub, QoS, retained messages, and how Harper simplifies IoT and edge data workflows. Watch how to publish, subscribe, and store sensor data instantly with an easy, developer-friendly setup.
Ivan R. Judson, Ph.D.
Comparison
GitHub Logo

Harper vs. AWS IoT Core: Why Unified Architectures Win for Real-Time Systems

Harper’s unified application platform fuses MQTT, database storage, and real-time logic into one high-performance runtime—eliminating AWS service sprawl, IAM complexity, and Lambda overhead. For real-time systems, Harper delivers simpler architectures, lower latency, reduced costs, and faster developer velocity compared to fragmented AWS IoT Core solutions.
Comparison
Harper’s unified application platform fuses MQTT, database storage, and real-time logic into one high-performance runtime—eliminating AWS service sprawl, IAM complexity, and Lambda overhead. For real-time systems, Harper delivers simpler architectures, lower latency, reduced costs, and faster developer velocity compared to fragmented AWS IoT Core solutions.
A man with short dark hair, glasses, and a goatee smiles slightly, wearing a black shirt in front of a nature background.
Ivan R. Judson, Ph.D.
Distinguished Solution Architect
Comparison

Harper vs. AWS IoT Core: Why Unified Architectures Win for Real-Time Systems

Harper’s unified application platform fuses MQTT, database storage, and real-time logic into one high-performance runtime—eliminating AWS service sprawl, IAM complexity, and Lambda overhead. For real-time systems, Harper delivers simpler architectures, lower latency, reduced costs, and faster developer velocity compared to fragmented AWS IoT Core solutions.
Ivan R. Judson, Ph.D.
Dec 2025
Comparison

Harper vs. AWS IoT Core: Why Unified Architectures Win for Real-Time Systems

Harper’s unified application platform fuses MQTT, database storage, and real-time logic into one high-performance runtime—eliminating AWS service sprawl, IAM complexity, and Lambda overhead. For real-time systems, Harper delivers simpler architectures, lower latency, reduced costs, and faster developer velocity compared to fragmented AWS IoT Core solutions.
Ivan R. Judson, Ph.D.
Comparison

Harper vs. AWS IoT Core: Why Unified Architectures Win for Real-Time Systems

Harper’s unified application platform fuses MQTT, database storage, and real-time logic into one high-performance runtime—eliminating AWS service sprawl, IAM complexity, and Lambda overhead. For real-time systems, Harper delivers simpler architectures, lower latency, reduced costs, and faster developer velocity compared to fragmented AWS IoT Core solutions.
Ivan R. Judson, Ph.D.